

A series of 4-aryl-3,7,7-trimethyl-1-phenyl-7,8-dihydro- 1 H -pyrazolo[3,4-b]quinolin- $5(6 \mathrm{H})$-ones were synthesized by the three-component reaction of aromatic aldehydes, 3-methyl-1-phenyl-1 H -pyrazol-5amine, and 5,5-dimethyl-1,3-cyclohexandione in the presence of sodium 1-dodecanesulfonate in aqueous medium. Compared to the previous methods, this new protocol has the advantages of convenient operation, higher yields, lower cost, and environmentally benign procedure.
J. Heterocyclic Chem., 49, 212 (2012).

INTRODUCTION

The need to reduce the amount of toxic waste and byproducts arising from chemical processes requires increasing emphasis on the use of less toxic and environmentally compatible materials in the design of new synthetic methods [1]. One of the most promising approaches uses water as the reaction medium [2]. Rideout and Breslow, who showed that hydrophobic effects could strongly enhance the rate of several organic reactions, rediscovered the use of water as a solvent in organic reactions in 1980s [3]. In recent years, there has been increasing recognition that water is an attractive medium for many organic reactions [4]. The aqueous medium with respect to organic solvent is less expensive, less dangerous, and environment friendly. Generally, the low solubility of most reagents in water is not an obstacle to the reactivity, which on the contrary, is reduced with the use of cosolvents.

Multicomponent reactions (MCRs), in which multiple reactions are combined into one synthetic operation, have been used extensively to form carbon-carbon bonds in the synthetic chemistry [5]. Such reactions offer a wide range of possibilities for the efficient construction of highly complex molecules in a single procedural step, thus avoiding the complicated purification operations and allowing savings of both solvents and reagents. In the past decade, there have been tremendous developments in three- and four-component reactions and grant efforts continue to be made to develop new MCRs [6].

Pyrazole derivatives exhibit pharmacological activities such as hypotensive, antibacterical, anti-inflammatory, and antitumor properties. In particular, fused pyrazole are known for various biological activities, e.g., pyra-zolo[3,4-b]quinolines as potential antiviral [7], antimalarial [8], and lowering of serum cholesterol. A number of methods are available for the synthesis of pyrazolo [3,4-b]quinolines [9]; the most efficient and commonly used method involves the reaction of aromatic aldehyde, 1,3-dicarbonyl compound, and aminopyrazole in organic solvent such as EtOH [10]. Each of the above methods has its own merits; however, these methods are also plagued by limitation of poor yields, difficult work-up, and effluent pollution. As part of our current studies on the developments of new routes to heterocyclic system in aqueous media [11], we herein described a clean synthesis of pyrazolo[3,4-b]quinoline-5 $(6 H)$-one derivatives by the three-component reaction of aromatic aldehyde, 5,5-dimethyl-1,3-cyclohexanedione, and 3-methyl-1-phenyl- 1 H - pyrazol-5-amine using water as reaction medium (Scheme 1).

RESULTS AND DISCUSSION

Choosing an appropriate solvent is of crucial importance for the successful organic synthesis. To search for the optimum reaction solvent, the reaction of 4-hydroxybenzaldehyde (1a), 5,5-dimethyl-1,3-cyclohexanedione (2), and 3-methyl-1-phenyl-1 H -pyrazol-5-amine (3) was examined using $\mathrm{H}_{2} \mathrm{O}$, acetone, 95% ethanol, DMF and

Scheme 1.

chloroform as solvent, respectively. The results were summarized in Table 1.
From Table 1, it can be seen that this reaction using water as solvent exhibited the most excellent yield. Therefore, water was chosen as the solvent for this reaction. To examine the efficiency and the applicability of this three-component reaction, a series of different aromatic aldehydes were tested in aqueous media. As shown in Table 2, this protocol could be applied to the aromatic aldehydes with either electron-withdrawing groups (such as halide groups) or electron-donating groups (such as alkyl and alkoxyl groups). The products were different from those literature reported [10].

Apart from the mild conditions of the process and its excellent results, the simplicity of product isolation and the possibility to recycle the reaction solution offer a significant advantage. Because SDS is soluble in water and the desired product is less soluble in water, the products can be directly separated by cooling to room temperature and filtering after the reaction is completed. The remaining reaction solution can be recycled. Studies using 1a, $\mathbf{2}$, and $\mathbf{3}$ as model substrates showed that the recovered reaction solution could be successively recycled in subsequent reaction without any decrease of yield (Table 3).

The structures of the products were established on the spectroscopic data. The structure of compound $\mathbf{4 k}$ was further confirmed by X-ray diffraction analysis. The molecular structure of the product $\mathbf{4 k}$ is shown in Figure 1. The crystallographic data of compound $\mathbf{4 k}$ is summarized in Table 4.
Although the detailed mechanism of this reaction has not been clarified yet, the formation of 4 can be explained by the possible mechanism presented in Scheme 2. The

Table 1
Solvent optimization for the synthesis of $\mathbf{4 a}$.

Entry	Solvent	Reaction temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Isolated yield $(\%)$
1	$\mathrm{H}_{2} \mathrm{O} / \mathrm{SDS}^{2}$	90	11	98
2	$\mathrm{CH}_{3} \mathrm{COCH}$	3	Reflux	11
3	EtOH_{4}	DMF	Reflux	11
5	CHCl_{3}	Reflux	11	0

reaction occurs via an initial formation of the α, β-unsaturated ketone, from the condensation of aldehyde and 5,5-dimethyl-1,3-cyclohexanedione as shown in Scheme 2, which suffers nucleophilic attack to give the Michael adduct [A]. The intermediate [A] then isomerizates, cyclizes, dehydrates, and subsequently losses a hydrogen molecule to afford the fully aromatized compound. This type of hydrogen loss is well documented [12].

In summary, we developed an efficient three-component reaction of aromatic aldehydes, 5,5-dimethyl-1,3cyclohexanedione, and 3-methyl-1-phenyl-1H-pyrazol-5amine for the synthesis of pyrazolo[3,4-b]quinolne-5one derivatives using water as reaction medium. Compared to the previous methods, this new protocol has the advantages of convenient operation, higher yields, low cost, and environmentally benign procedure.

EXPERIMENTAL

Melting points are uncorrected. IR Spectra were recorded on a FT-IR Temsor 27 spectrometer in KBr with absorptions in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were determined on a Bruker DPX400 MHz spectrometer using DMSO- d_{6} solutions. Chemical shifts are expressed in ppm downfield from internal tetramethylsilane. High resolution mass spectra were obtained using TOF-MS instrument.

General procedure for the synthesis of 4-aryl-3,7,7-tri-methyl-1-phenyl-7,8-dihydro-1H-pyrazolo [3,4-b]quinolin$\mathbf{5}(\mathbf{6 H})$-ones 4. A mixture of aromatic aldehyde $1(2 \mathrm{mmol})$, 5,5 -dimethyl-1,3-cyclohexanedione 2 (2 mmol), 3-methyle-1-phenyl-1H-pyrazol-5-amine 3 (2 mmol), and $\operatorname{SDS}(0.2 \mathrm{~g})$ in

Table 2
The synthesis of $\mathbf{4}$ in aqueous medium.

Entry	Product	Ar	Time (h)	Isolated yield (\%)
1	$\mathbf{4 a}$	$4-\mathrm{HOC}_{6} \mathrm{H}_{4}$	10	96
2	$\mathbf{4 b}$	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	16	86
3	$\mathbf{4 c}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	10	93
4	$\mathbf{4 d}$	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	12	95
5	$\mathbf{4 e}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	9	95
6	$\mathbf{4 f}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	15	97
7	$\mathbf{4 g}$	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	12	98
8	$\mathbf{4 h}$	$4-\left(\mathrm{CH}_{3} \mathrm{NCC}_{6} \mathrm{H}_{4}\right.$	17	98
9	$\mathbf{4 i}$	$3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	6	84
10	$\mathbf{4 j}$	$3,4-\mathrm{OCH}_{2} \mathrm{OC}_{6} \mathrm{H}_{3}$	11	98
11	$\mathbf{4 k}$	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	12	97

Table 3
Studies on the reuse of reaction solution in the preparation of $\mathbf{4 a}$.

Round	1	2	3	4	5
Yield (\%)	96	95	94	92	92

$\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was stirred for $6-17 \mathrm{~h}$ at $90^{\circ} \mathrm{C}$, then cooled to room temperature. The crystalline powder formed was collected by filtration, washed with water. The crude products were purified by recrystallization from DMF to give 4.
4-(4-Hydroxyphenyl)-3,7,7-trimethyl-1-phenyl-7,8-dihydro-1H-pyrazolo[3,4-b]quinolin-5(6H)-one (4a). M.p.: $281-283^{\circ} \mathrm{C}$ (ref. 13; M.p.: $277-279^{\circ} \mathrm{C}$); IR (potassium bromide): 3304, 3058, 1666, 1613, 1593, 1512, 1456, 1437, 1385, 1264, 1172, 1026, 849, $758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.07(6 \mathrm{H}, \mathrm{s}, 2$ $\left.\times \mathrm{CH}_{3}\right), 1.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.19(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.07(2 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}, \mathrm{ArH}), 7.35(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.57(2 \mathrm{H}, \mathrm{t}, J=8.0$ $\mathrm{Hz}, \mathrm{ArH}), 8.24(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 9.60(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

4-(2-Chlorophenyl)-3,7,7-trimethyl-1-phenyl-7,8-dihydro-1H-pyrazolo[3,4-b]quinolin-5(6H)-one (4b). M.p.: $156-158^{\circ} \mathrm{C}$; IR (potassium bromide): 3056, 1682, 1593, 1569, 1498, 1479, 1384, 1268, 1125, 853, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) δ : $1.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.58$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.34-7.40(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.44-7.53(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.57-7.61(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.25(2 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}$, ArH); HRMS [Found: $m / z: 415.1457\left(\mathrm{M}^{+}\right)$; Calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{22}^{35} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{M} 415.1451\right]$.

4-(4-Fluorophenyl)-3,7,7-trimethyl-1-phenyl-7,8-dihydro-1H-pyrazolo[3,4-b]quinolin-5(6H)-one (4c). М.p.: 170-172 ${ }^{\circ} \mathrm{C}$ (ref. 13; M.p.: $172-174^{\circ} \mathrm{C}$); IR (potassium bromide): 3062, 1678 , 1596, 1561, 1509, 1470, 1455, 1382, 1260, 1158, 1093, 848, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ DMSO- $\left.d_{6}\right) \delta: 1.08\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right)$, $1.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.28-$ $7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.59(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.24(2 \mathrm{H}$, d, $J=8.0 \mathrm{~Hz}, \mathrm{ArH})$.

Figure 1. The X-ray crystal structure of compound $\mathbf{4 k}$.

Table 4
Crystallographic data of compound $\mathbf{4 k}$.

Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$
Formula weight	411.49
Temperature	$293(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	Monoclinic
Space group	Pn
Unit cell dimensions	$a=14.101(9) \AA \alpha=90^{\circ}$
	$b=7.584(5) \AA \beta=122.73(3)^{\circ}$
Volume	$c=23.376(11) \AA \AA^{\circ} \gamma=90^{\circ}$
Z	$2103(2) \AA^{3}$
Density (calculated)	4
Absorption coefficient	$1.300 \mathrm{Mg} / \mathrm{m}^{3}$
$\mathrm{~F}(000)$	$0.083 \mathrm{~mm} \mathrm{~m}^{-1}$
Crystal size	872
Theta range for data	$0.29 \times 0.18 \times 0.11 \mathrm{~mm}^{3}$
\quad collection	1.84° to 25.01°
Limiting indices	$-16 \leq \mathrm{h} \leq 16,-8 \leq \mathrm{k} \leq 9$,
	$-19 \leq 1 \leq 27$
Reflections collected	10637
Independent reflections	$3687[R(\mathrm{int})=0.0712]$
Data/restraints/paramenters	$3687 / 0 / 281$
Goodness-of-fit on F^{2}	1.004
Final R indices $[I>2 \sigma(I)]$	$R_{1}=0.0524, w R_{2}=0.1056$
R indices (all data)	$R_{1}=0.1316, w R_{2}=0.1365$
Largest diff. peak and hole	0.192 and $-0.210 \mathrm{e} \cdot \AA^{-3}$

4-(3-Chlorophenyl)-3,7,7-trimethyl-1-phenyl-7,8-dihydro-1H-pyrazolo[3,4-b]quinolin-5(6H)-one (4d). M.p.: $163-165^{\circ} \mathrm{C}$; IR (potassium bromide): 3063, 1685, 1599, 1509, 1483, 1382, 1265, 1128, 985, 758, $736 \mathrm{~cm}^{-1} ;{ }^{1}$ H-NMR (DMSO- d_{6}) $\delta: 1.09$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.22$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.27(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.37(1 \mathrm{H}, \mathrm{t}, J=$ $7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.43$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), $7.48-7.65$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $8.24(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$; HRMS [Found: $m / z: 415.1445$ $\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{25} \mathrm{H}_{22}^{35} \mathrm{ClN}_{3} \mathrm{O}$: M 415.1451].

4-(4-Chlorophenyl)-3,7,7-trimethyl-1-phenyl-7,8-dihydro-1H-pyrazolo[3,4-b]quinolin-5(6H)-one (4e). M.p.: $181-183^{\circ} \mathrm{C}$ (ref. 13; M.p.: $180-183^{\circ} \mathrm{C}$); IR (potassium bromide): 3060,1680 , 1595, 1489, 1455, 1386, 1264, 1126, 844, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\right.$ DMSO- $\left.d_{6}\right) \delta: 1.08\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.51$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.21\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.32-7.38(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.53$ $(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.58(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.24$ $(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$.

4-(4-Methylphenyl)-3,7,7-trimethyl-1-phenyl-7,8-dihydro-1H-pyrazolo[3,4-b]quinolin-5(6H)-one (4f). M.p.: 182-184 ${ }^{\circ} \mathrm{C}$ (ref. 13; M.p.: $184-186^{\circ} \mathrm{C}$); IR (potassium bromide): 3021, 1677 , 1591, 1560, 1499, 1455, 1386, 1263, 1126, 803, $752 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.08\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.81(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.21\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $7.16(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.27(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, $\mathrm{ArH}), 7.36(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.58(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}$, $\mathrm{ArH}), 8.24(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$.

4-(4-Bromophenyl)-3,7,7-trimethyl-1-phenyl-7,8-dihydro-1H-pyrazolo[3,4-b]quinolin-5(6H)-one (4g). M.p.: 184-186 ${ }^{\circ} \mathrm{C}$ (ref. 13; M.p.: $188-189^{\circ} \mathrm{C}$); IR (potassium bromide): 3069, 1679 , 1592, 1569, 1558, 1498, 1455, 1416, 1386, 1264, 1174, 1099, 909, 843, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$-NMR (DMSO- d_{6}) $\delta: 1.06(6 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{CH}_{3}\right), 1.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.21\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$,

Scheme 2. The possible mechanism for the synthesis of compound 4.

$7.27(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.37(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{ArH})$, $7.58(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.67(2 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}, \mathrm{ArH})$, $8.24(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$.

4-(4-Dimethylaminophenyl)-3,7,7-trimethyl-1-phenyl-7,8-dihy-dro-1H-pyrazolo[3,4-b]quinolin-5(6H)-one (4h). М.p.: 195$197^{\circ} \mathrm{C}$ (ref. 13; M.p.: 194-196 ${ }^{\circ} \mathrm{C}$); IR (potassium bromide): 3066, 1687, 1612, 1567, 1506, 1473, 1419, 1385, 1283, 1260, 1201, 1130, 983, 816, 790, $766 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta:$ $1.07\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $2.99\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right), 3.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.78(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.35(1 \mathrm{H}, \mathrm{t}, J$ $=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.57(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.25(2 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}, \mathrm{ArH})$.

4-(3,4-Dichorophenyl)-3,7,7-trimethyl-1-phenyl-7,8-dihydro-1H-pyrazolo[3,4-b]quinolin-5(6H)-one (4i). M.p.: 176-178 ${ }^{\circ} \mathrm{C}$ (ref. 13; M.p.: $179-181^{\circ} \mathrm{C}$); IR (potassium bromide): 3062, $1683,1598,1568,1509,1482,1439,1419,1385,1309,1291$, 1264, 1130, 985, 812, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.17$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.26$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.14\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, \mathrm{ArH}\right)$, $7.34(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.38(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}$, ArH) , $7.53-7.59(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.28(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}$, ArH).

4-(3,4-Methylenedioxyphenyl)-3,7,7-trimethyl-1-phenyl-7,8-dihydro-1H-pyrazolo[3,4-b]quinolin-5(6H)-one (4j). М.p.: 178$180^{\circ} \mathrm{C}$ (ref. 13; M.p.: $175-177^{\circ} \mathrm{C}$); IR (potassium bromide): $3055,1672,1598,1557,1507,1491,1473,1456,1381,1351$, 1291, 1255, 1176, 1037, 934, 810, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.08\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.51$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.72$ $(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 6.89(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.00(1 \mathrm{H}, \mathrm{d}, J=$ $7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.36(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.58(2 \mathrm{H}, \mathrm{t}, J=$ $7.6 \mathrm{~Hz}, \mathrm{ArH}), 8.24(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$.

4-(4-Methoxyphenyl)-3,7,7-trimethyl-1-phenyl-7,8-dihydro-1H-pyrazolo[3,4-b]quinolin-5(6H)-one (4k). М.p.: 139-141 ${ }^{\circ} \mathrm{C}$ (ref. 13; M.p.: $138-140^{\circ} \mathrm{C}$); IR (potassium bromide): 3017, 2956, 2868, 2834, 1676, 1608, 1581, 1556, 1514, 1467, 1439, $1410,0382,1305,1292,1244,1175,906,842,808,751,687$
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.07\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.85$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.84(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 7.02(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.20(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.36(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.58(2 \mathrm{H}, \mathrm{t}, J=$ $8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.24(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$.

Acknowledgments. Financial support from the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 10KJA150049) and the Foundation of Key Laboratory of Organic Synthesis of Jiangsu Province (No. JSK0812).

REFERENCES AND NOTES

[1] (a) Amato, J. Science 1993, 259, 1538; (b) Illman, D. L. Chem Eng News 1994, 72, 22.
[2] (a) Li, C. J.; Chang, T. H. Organic Reactions in Aqueous Media; Wiley: New York, 1997; (b) Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Eur J Org Chem 2001, 439.
[3] (a) Rideout, D. C.; Breslow, R. J Am Chem Soc 1980, 102, 7816; (b) Breslow, R. Acc Chem Res 1991, 24, 159.
[4] (a) Li, C. J. Chem Rev 1993, 93, 2023; (b) Ballini, R.; Bosica, G. Tetrahedron Lett 1996, 37, 8027; (c) Meijer, A.; Otto, S.; Engberts, J. B. F. N. J Org Chem 1998, 63, 8989; (d) Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. J Org Chem 1999, 64, 1033; (e) Bigi, F.; Carloni, S.; Ferrari, L.; Maggi, R.; Mazzacani, A.; Sartori, G. Tetrahedron Lett 2001, 42, 5203.
[5] (a) Zhu, J.; Bienayme, H. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005; (b) Ramón, D. J.; Yus, M. Angew Chem Int Ed 2005, 44, 1602; (c) Simon, C.; Constantieux, T.; Rodriguez, J. Eur J Org Chem 2004, 4957; (d) Zhu, J. Eur J Org Chem 2003, 1133; (e) Orru, R. V. A.; de Greef, M. Synthesis 2003, 1471; (f) Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.; Mathen, J. S.; Balagopal, L. Acc Chem Res 2003, 36, 899; (g) Bienaymé, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem Eur J 2000, 6, 3321; (h) Dömling, A.; Ugi, I. Angew Chem Int Ed 2000, 39, 3168; (i) Tietze, L. F.; Modi, A. Med Res Rev 2000, 20, 304.
[6] (a) Nair, V.; Vinod, A. U.; Rajesh, C. J Org Chem 2001, 66, 4427; (b) List, B.; Castello, C. Synlett 2001, 1687; (c)

Shestopalov, A. M.; Emeliyanova, Y. M.; Shestopalow, A. A.; Rodinovslaya, L. A.; Niazimbetova, Z. I.; Evans, D. H. Org Lett 2002, 4, 423; (d) Bertozzi, F.; Gustafsson, M.; Olsson, R. Org Lett 2002, 4, 3147; (e) Bagley, M. C.; Dale, J. W.; Bower, J. Chem Commun 2002, 1682; (f) Cheng, J. F.; Chen, M.; Arrhenius, T.; Nadzan, A. Tetrahedron Lett 2002, 43, 6293; (g) Huma, H. Z. S.; Halder, R.; Kalra, S. S.; Das, J.; Iqbal, J. Tetrahedron Lett 2002, 43, 6485; (h) Bora, U.; Saikia, A.; Boruah, R. C. Org Lett 2003, 5, 435.
[7] Sminoff, P.; Crenshaw, R. R. Antimicrob Agents Chemother 1977, 11, 571.
[8] Stein, R. G.; Beil, J. H.; Singh, T. J Med Chem 1970, 13, 153.
[9] (a) Hayes, R.; Meth-Cohn, O. A Tetrahedron Lett 1982, 23, 1613; (b) Rajendran, S. P.; Manonmani, M.; Vijayalakshmi, S. Org Pre Proc Int 1994, 26, 383; (c) Paul, S.; Gupta, M.; Gupta, R.; Loupy, A. Tetrahedron Lett 2001, 42, 3827; (d) Tomasik, D.; Tomasik, P.; Abramovitch, R. A. J Heterocycl Chem 1983, 20, 1539.
[10] (a) Quiroga, J.; Insuasty, B.; Hormaza, A.; Saitz, C.; Julian, C. J Heterocycl Chem 1998, 35, 575; (b) Quiroga, J.; Alvarado, M.;

Insuasty, B.; Nogueras, M.; Sánchez, A.; López, M. D. J Heterocycl Chem 1999, 36, 113; (c) Quiroga, J.; Cruz, S.; Insuasty, B.; Abonia, R.; Cobo, J.; Sánchez, A.; Nogueras, M.; Low, J. N. J Heterocycl Chem 2001, 38, 53; (d) Hua, G. P.; Xu, J. N.; Tu, S. J.; Wang, Q.; Zhang, J. P.; Zhu, X. T.; Li, T. J.; Zhu, S. L.; Zhang, X. J. Chin J Org Chem 2005, 25, 1610.
[11] (a) Shi, D. Q.; Yao, H.; Shi, J. W. Synth Commun 2008, 38, 1662; (b) Shi, D. Q.; Shi, J. W.; Yao, H. Synth Commun 2009, 39, 664; (c) Shi, D. Q.; Yao, H. Synth Commun 2009, 39, 2481; (d) Shi, D. Q.; Niu, L. H.; Shi, J. W.; Wang, X. S.; Ji, S. J. J Heterocycl Chem 2007, 44, 1083; (e) Shi, D. Q.; Niu, L. H.; Yao, H.; Jiang, H. J Heterocycl Chem 2009, 46, 237; (f) Shi, D. Q.; Shi, J. W.; Rong, S. F. J Heterocycl Chem 2009, 46, 1331; (g) Shi, D. Q.; Yao H. J Heterocycl Chem 2009, 46, 1335; (h) Li, Y. L.; Chen, H.; Shi, C. L.; Shi, D. Q.; Ji, S. J. J Comb Chem 2010, 12, 231; (i) Chen, H.; Shi, D. Q. J Comb Chem 2010, 12, 571.
[12] Dimmock, J. R.; Raghavan, S. K.; Bigam, G. E. Eur J Med Chem 1988, 23, 111.
[13] Shi, D. Q.; Yang, F. J Heterocycl Chem, to appear.

